Strain-gradient mediated local conduction in strained bismuth ferrite films
نویسندگان
چکیده
منابع مشابه
Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films
Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for t...
متن کاملFe b 20 02 Faraday rotation and sensitivity of ( 100 ) bismuth - substituted ferrite garnet films
We have investigated the Faraday rotation of in-plane magnetized bismuth-substituted ferrite garnet films grown by liquid phase epitaxy on (100) oriented gadolinium gallium garnet substrates. The Faraday spectra were measured for photon energies between 1.7-2.6 eV. To interprete the spectra, we use a model based on two electric dipole transitions, one tetrahedral and one octahedral. Furthermore...
متن کاملCrack Spacing in Strained Films
Consider a thin film resting on a relatively thick substrate. When the substrate is subjected to an axial strain transverse cracks, normal to the direction, of the applied strain may appear in the film. It is observed that, for a given strain, the spacing between such cracks is uniform, with a clearly identifiable characteristic length scale that can be used to provide bounds on the spacing. Fu...
متن کاملInfluence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite
The dependencies on strain and oxygen vacancies of the ferroelectric polarization and the weak ferromagnetic magnetization in the multiferroic material bismuth ferrite, BiFeO3, are investigated using first principles density functional theory calculations. The electric polarization is found to be rather independent of strain, in striking contrast to most conventional perovskite ferroelectrics. ...
متن کاملConduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes
Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2019
ISSN: 2041-1723
DOI: 10.1038/s41467-019-10664-5